4 Synthesis of Software Designs

@‘“ﬁﬁ;:k;seamﬁcemr from Req u i rements

Photo: NASA Ames Research Center

Jon Whittle
0SS Group Inc.
NASA Ames Research Center

o

‘565,"&& - :
5@/1 Software Modeling: now and future
«& 7 Ames Research Center

|
Requirements i d.&l R
Specification Sl iEIeEtLlS
a > Des=ign

Cezign
Specification |
and Test Plan

L Process _______________j_ _______ S [l | | | | | | @
- i Impl?rjnsg:::ﬂn;tinn - UNIFIED

B — MODELING
< > LANGUAGE

g

Development
System

A software model is a blueprint for software: essential for project team
communication and to ensure architectural soundness

* NASA missions generally follow rigorous software processes that increasingly rely
on software modeling, e.g., Mission Data System (JPL), Space Shuttle (United Space
Alliance)

 Currently, however, software models serve merely as documentation that becomes
obsolete when crunch time hits

Our research goal: develop algorithms and tools that allow
software models to be kept in sync with each other

Software Modeling

v oo _..‘Detailed Alr?h'ftema' : Advantages:
Desgn 477 Software lifecycle

* common language

Design SR * easy to document code
Specification | Mo . .
ahdl Toct i e each stakeholder chooses his own notation

""""""" » multiple viewpoints

! | mplementation

Customer
Feedback

Problems:

* loose connection between models
e difficult to maintain consistency
* redundancy in models

Research Goal:
algorithms, methodologies and tool support for
<— connecting models in a consistent way
&7

1
1
1
_______________ 1————————-: System
i
1
1
1
1

*Unifies OO methods
*Modeling language for OO

| | | | | | / *Notations + meta-model
*Commercial tools: Rhapsody, Rose etc.

U N I FI E D *Used in NASA: MDS, Space Shuttle, ATC

— MODELING
N LANGUAGE

Y

A

e

m __ Software Modeling with UML

g

Y

Use cases , SN
(scenarios) Requirements)

2°?
Statecharts . []
Design

o /
1 Code generators

e Unifies OO methods
* Modeling language for OO

. Notations + meta-model

C++/Javal/. . Code

* Commercial tools: Rhapsody, Rose etc.
* Usedin NASA: MDS, Space Shuttle, ATC

o

% Design Synthesis From Scenarios
n@*“& Umes Research Center

g

Requirement Scenarios
(global view)

Design
(local view)

Y

Y

Technical challenge:

e detect inconsistencies

» merge duplicated behaviors

* generate readable designs

* facilitate iterative refinements

| Statechart synthesis ’S:\L?
from scenarios (UML

sequence diagrams)

What is a “good” synthesis
machine?

e Related work:

— Harel’s LSCs

— Systid et al (MAS)

— Khriss et al
 Detect inconsistencies & ambiguities
 Merge similar or duplicated behaviors
e Generate readable statecharts
 Facilitate 1terative refinements

&

ﬁm . Technology Developed

g

e Developed an algorithm for automatically translating UML sequence diagrams
into UML statecharts that embodies the idea of a “good” synthesis engine
e Previous state of the art based around a “naive” merging:
— Generate a statechart for each class/component
— Regard incoming messages as trigger events, outgoing messages as actions

— Merge each class’s statecharts from all the sequence diagrams “naively”

“naive”
merge

-
T

~

if a: execute b

if c: cont

R

——

» ScGen supercedes this using advanced technology to merge states if appropriate,
introduce structure into the states automatically and detecting conflicts in the scenarios

A
v"\gﬂ’
'\.‘%{F
%

&

+/-1. Scenarios & Semantic Content

& :
7 Ames Research Center

g

A “good” synthesis engine requires additional semantic information
» Use Explicit Labels or Class Diagram Constraints (OCL)
Explicit Labels: C

b

OCL Constraints:
Context Agent::graspBox(b : Box)
pre: self.carries->1sEmpty
post: self.carries->includes(b)

SD1: graspBox, move
SD2: graspBox, graspBox, move

Characterize states using State Vector :
— SV = <orient’, gripper’, hands’, carries’, coordWith’, leader’ >
Use state vector to merge states, detect conflicts and introduce hierarchy:
— via a unify/propagate/conflict detection algorithm

Case study:
&/ Center Tracon Automation System (CTAS)

@ﬁe@ Ames Research Center

g

CTAS Processes

HDAR ADAR)))
e Set of tools to increase throughput at airports/ in

ISM US airspace

WDAD WDPD
S __ i / — e Already implemented, but constantly evolving
N
¥

e Weather control logic -distribute weather updates
to all clients

TMA, TS
EDA only TS TS

n Direct-To/
= FAST only EDA only

formal Q: To what extent is it possible to automate end to end synthesis?

/ scenarios\
reqmts \) C++ code

class
diagram =

9':‘2

-&Q
\n(@““ Ames Research Center

g

Requirements

o “every client that uses weather data should be notified of a
weather update and all clients should begin using the
updated weather data at the same time”

e 10 pages of textual requirements, e.g.:

2.8.16. The CM should perform the following actions when the Weather
Cycle status is POSTUPDATING and any connected weather-aware client
has responded no to the CTAS_USE_NEW_WTHR message:

a) it should set the Weather Cycle status to DONE;
b) it should remove the Weather Cycle pending state
c) it should enable the F2 weather control panel “set” button

d) it should write the new weather forecast information to the
cmsim file

e) it should send CM_CLOSE_CONNECTION messages to all
connected weather-aware clients

e Generic form:

IN(state) and Prec = Actions

e 46 scenarios + structural information

e

&@5&0
A2
\B‘“ﬁé -
&09:.
& 7 Ames Res

g

earch Center

Formal Scenarios

e Transcribed 46 scenarios into UML sequence diagrams
(2-20 messages each):

panel

wthrCycle

POSTUE

enableSet

client

cm clientStatus
DATING < no(CTAS_USE_NEW_WT
set(DONE) FAILED USE
<
removePendingWthr
writetoCMSIM (forecast)
4_
>
{all }CM_CLIOSE_CONNECTION

HR)

Statechart and Code Synthesis%

Ames Research Center

e Statecharts for CM synthesized using ScGen algorithm
(ICSE2000) extended to deal with state labels.

e (lass diagram developed from requirements and populated
with method declarations

e Method bodies reverse engineered from existing CTAS
code

 C++ code generated using RoseRT

o

&%5&0
ry
/1 . Future Work
& 7 Ames Research Center

g

e Design synthesis from scenarios
— Support design synthesis with patterns
— Develop algorithms for the “backwards direction”
— Application to reverse engineering

e Other models

— Algorithms for translating between multiple viewpoints for other
UML models: e.g., in developing consistent domain models for state
estimation program synthesis

Synthesis of Software Designs from Requirements

Objective:

Increase the effectiveness and efficiency of software modeling within
NASA by:

* developing advanced algorithms that support software modeling

* focusing on modeling languages in use within NASA — namely, the
Unified Modeling Language (UML)

* integrating the algorithms and their implementations into NASA
software projects

Benefits:

* Increased productivity and reliability in large NASA software
projects

* Reusability between NASA software projects

Principal Investigator:

Jon Whittle, QSS Group Inc.
NASA Ames Research Center
+1 650 604 3589

Jjonathw @email.arc.nasa.gov

Project Researchers:
Jon Whittle and Johann Schumann,
NASA Ames Research Center

Significant Accomplishments

* Prototype tool, ScGen, designed and implemented in Java
» Paper on ScGen won a Best Paper Award at the
International Conference on Software Engineering

* Research team have organized a number of successful,
high profile workshops in this field: at OOPSLA and ICSE
conferences

» ScGen currently undergoing application case study
within the CTAS software development process at NASA
Ames

e Silicon Valley start-up interested in commercialization

